In this paper, Kaminski and Malgieri demonstrate the potential application and shortcomings of data protection impact assessments for assessing the multi-layered impacts of AI.
Policy-makers, scholars, and commentators are increasingly concerned with the risks of using profiling algorithms and automated decision-making. The EU’s General Data Protection Regulation (GDPR) has tried to address these concerns through an array of regulatory tools. The GDPR contains an array of systemic accountability tools. Of these tools, impact assessments (Art. 35) have recently received particular attention on both sides of the Atlantic, as a means of implementing algorithmic accountability at early stages of design, development, and training. The aim of this paper is to address how a Data Protection Impact Assessment (DPIA) links the two faces of the GDPR’s approach to algorithmic accountability: individual rights and systemic collaborative governance. We address the relationship between DPIAs and individual transparency rights. We propose, too, that impact assessments link the GDPR’s two methods of governing algorithmic decision-making by both providing systemic governance and serving as an important “suitable safeguard” (Art. 22) of individual rights.
After noting the potential shortcomings of DPIAs, this paper closes with a call — and some suggestions — for a Model Algorithmic Impact Assessment in the context of the GDPR. Our examination of DPIAs suggests that the current focus on the right to explanation is too narrow. We call, instead, for data controllers to consciously use the required DPIA process to produce what we call “multi-layered explanations” of algorithmic systems. This concept of multi-layered explanations not only more accurately describes what the GDPR is attempting to do, but also normatively better fills potential gaps between the GDPR’s two approaches to algorithmic accountability.